The Components of
Sioux Machine2World Embedded Linux

by Klaas van Gend

In this paper, the author presents the components required to build an embedded Linux
system. In order to understand the requirements for the embedded Linux system, first its
usage within a larger framework will be described. Then, the necessary packages are
introduced, followed by some special considerations for embedded (Linux) systems.

1. Sioux Machine2World

Sioux is an innovative company that specialises
in the software development for technical applica-
tions. Sioux was founded in 1996 and has grown
to over 100 specialists, operating from
Eindhoven, Rotterdam, Sittard and Antwerp.
Sioux supports a broad spectrum of companies
and research institutes in the areas of embedded
software and software for technical/scientific
systems. It is exactly this focus on technical
software development that enables Sioux to bring
high added value towards its customers.

One of our focus points is the Machine2World
platform, a generic component-based platform for
remote access, service and diagnostics of em-
bedded systems. Machine2World consists of an
Application server, currently based on the
Microsoft .Net technology and several embedded
‘Machines’, which talk to the Application Server.
The ‘Machines’ and the Application Server com-
municate using web services over a wide variety
of protocols, like TCP, GPRS and infrared. Ma-
chines can be implemented on a variety of plat-
forms, among which Linux.

One of our customers plans to use
Machine2World to remotely monitor Vending
Machines. For this, the new Machine board talks
to the embedded control board of existing Vend-
ing Machines. It communicates observed data
using GPRS (the packet data version of GSM) to
the Application Server. A service engineer using
the Application Server then can decide whether
he needs to pay the machine a visit.

2. Machine Hardware: DIMM-PC

Because our customer expects to sell their re-
mote-operation board as an option to vendors,
the cost price of the hardware is important.

LI LR LRLR IR LALT R
AR LRI

Figure 1 DIMM-PC

It is decided that the first release should be
created using Commercial Off The Shelves
(COTS) hardware. The Jumptec DIMM-PC
platform was chosen. A DIMM-PC is a nearly
complete x86-based system, the size of a DIMM
module, approx. a credit card. Figure 1 shows a
sample of the DIMM-PC. Through the DIMM
connector, serial and parallel ports can be at-
tached, or e.g. IDE disks. Also, the complete ISA
bus is available on the DIMM connector for
expansion, e.g. to add an Ethernet or VGA
adapter.

The DIMM-PC of choice, the DIMM PC/386,
features an i386 processor at 12-40 MHz, 4 MB
of RAM and 8 MB of Flash IDE. This is a regular

40 mm

flash chip, combined with a controller that maps
the flash memory to an IDE interface. This way,
the flash memory can be accessed like a hard
disk. This is very convenient for developers, as
no difficult boot strategies and/or flash file sys-
tems have to be written, just use the regular
booting process. Jumptec provides DIMM-PCs
up to Pentium-class at 133 MHz.

3. Machine Software: Linux

Tailored Vending Machine Software

Machine2World
Framework + GPRS

Command
line tools
| | | | | |

HTTP PPP

System libraries

LinuxKernel

Figure 2 layering of the embedded system

Linux was chosen as operating system, because
it is powerful, scaleable, well known and free.
There are no real-time requirements, thus a
regular Linux kernel was used. Because of the
hardware limitations, however, several of the
usual components of a GNU/Linux system had to
be replaced by smaller variants, focussed on
embedded systems.

The layering of the software is depicted in Fig-
ure 2. The dark shaded boxes are open source
projects, the lightly shaded boxes are Sioux-
specific development. These boxes are described
below.

3.1 Linux Kernel

For this product, we chose to use the Linux 2.2
kernel series. Only the bare minimum was in-
stalled; among others console tty (the develop-
ment system did contain a vga adapter), serial
ports, IDE disks, the kernel-side of the PPP
daemon, support for ram disks and math emula-
tion.

Support for loadable kernel modules was also
removed, as it won’t be necessary to change the
configuration of a running system. This resulted
in a bootable zipped kernel image (called
bzimage) of approx. 410 kB size. The running
kernel is 750 kB code and 400 kB of buffers and
memory |/O space.

To boot the kernel, LILO is used because the
kernel resides on a IDE disk.

Unfortunately, optimisation of the allocated kernel
buffer structures (e.g. by limiting the maximum
number of threads or limiting the number of ram
disks) did not result in reduced memory con-
sumption.

3.2 System Libraries: uClibc

Nearly all UNIX applications require a C library,
which contains the implementation of functions
like printf(), malloc() or getpwent(). Regular
Linux servers and desktop systems use the GNU
C library, which is a complete implementation for
a very broad range of computer systems. Be-
cause none of the libc developers ever paid
attention to less memory-privileged systems, the
GNU libc is huge.

As a spin-off of the i CLinux project, Erik
Andersen started writing on a libc replacement.
This evolved to the current uClibc, a libc imple-
mentation for embedded systems. Reducing the
footprint of the libc was done by rewriting func-
tions in an efficient way, removing backward
compatibility to e.g. ancient versions of UNIX or
AmigaOsS. Another win was the removal of UNIX
functions like wordexp(), which is huge in code
size, but isn’t used today in any Linux app. uClibc
isn’t finished, but very useable. It comes with
special compiler wrappers and it can be placed in
parallel to your regular GNU compilers and
libraries on a development system.

Several other large code pieces are configurable:
if you don’t need regular expressions in your C
library, you win 27 kB.

Next to the C library, uClibc also provides a run-
time linker to combine the application and several
necessary shared libraries, the math library libm,
the POSIX threading library libpthread and the
password/authentication library libcrypt.

The uClibc libraries are more than fifteen times
smaller then the current GNU libc family, in
general total size is 200 kB or less.

There are some important pitfalls, though: using
the gcc compiler, to reduce application size,
default constructors are never called. This can be
overridden by using the -uclibc-ctors option.

More information on uClibc can be obtained by
following the references in the appendix.

3.3 Command line tools: BusyBox &
TinyLogin

Another important part of GNU/Linux contains
shells like bash and tesh and commands like Is,
cut, vi and sed. Each command accepts loads of
command line options. Implementing these all by
themselves as GNU did, results in 200+ applica-
tions of 4 kB or more each. This is very inefficient
for disk usage.

The BusyBox project aims to replace all regular
system commands by a single executable. In the
/bin directory, there is only a single executable
called busybox, and loads of soft links pointing
from e.g. Is to the BusyBox executable. If a user
types Is —al, the BusyBox application receives
through the C variable argv[0] which application
to mimic. It then also knows how to interpret its
arguments. BusyBox implements all commonly
used options. Because all code is included in a
single executable, lots of option-code was re-
used, resulting in an even smaller executable.

Next to implementing the commands, BusyBox
also provides a shell, ash, the init process, a
simplified vi editor and the syslogd daemon.
There is no support for bash, but ash is a good
substitute for most of the scripts. Of course, it is
fully configurable which commands should be
kept out of the executable, thus reducing footprint
even further.

TinyLogin works similar to BusyBox, but is fo-
cused on users, groups and passwords. It con-
tains up to 31 commands like passwd,
addgroup, login and getty. TinyLogin is smaller
than BusyBox, usually below 40 kB. More discus-
sion on users, groups and passwords is pre-
sented in paragraph 4.2.

3.4 HTTP: Embedded web servers

The Machine is accessed via a Web Service. In
essence, this is nothing more than a CGl inter-
face, which accepts data, processes it and re-
turns an answer. The SOAP protocol is used to
define the data. The interface was defined in a
WSDL file, which enables the ‘so called’ .Net
development environment to generate proxy-
classes for accessing the web service on the
machine.

For connecting to the machine, the HTTP proto-
col was chosen, the machines are thus reachable
over regular internet connections. This also
means that a web server is required to route the
HTTP request to the web service.

For this HTTP service, two embedded web
servers were evaluated: THTTPD and Boa.
THTTPD, the Tiny/Throttling HTTP Daemon, was
developed as a small replacement for larger
servers like Apache. It has all usual features like
authentication, CGI and optionally SSL. The most
outstanding feature is throttling, it is possible to
limit data transfer per connection or per user. Boa
is an even smaller web server, specially targeted
for embedded systems. Unlike most other web
servers, Boa doesn’t use multiple threads or
processes to serve multiple clients at a time, but
uses a smart usage of the select() function. This
reduces kernel scheduling activities. In case of
CGl, Boa does start additional threads, however.

Because only the CGI functionality was needed,
in a later stadium of development we decided to
implement the HTTP protocol by ourselves. This
reduced the memory footprint by 120 kB, as
compared to using Boa.

3.5 GPRS, PPP and SSL

For communication with the outside world, a
connection has to be created. Because Ethernet
connections are not available in e.g. station halls
and stores, the wireless GPRS protocol was
chosen. GPRS is a recent enhancement to the
GSM standards. It allows for packet-oriented
connections, which are not paid on a connection
time basis, but per (mega) byte. A GPRS modem
is connected over a serial line. In addition to the
usual modem AT commands, the PIN-code for

the SIM card must be set to use this modem. We
run a PPP connection over GPRS, using the PPP
daemon by Paul Mackerras et al.

It was a requirement to have a kind of SSL to
protect the data streams against potential crack-
ers. Unfortunately, SSL implementations are
heavyweights, because the SSL protocol is
complex. It features several ciphers and multiple
key exchange algorithms.

Tools like stunnel are based on OpenSSL, and
are thus too large: stunnel is more than a mega-
byte (stripped!) on disk, and up to four mega-
bytes running. Zebedee contains most functional-
ity of stunnel, but supports only the Diffie-
Hellman and Blowfish protocols. Additionally,
Zebedee uses (b)zlib for datacompression.
Zebedee takes less than 300 kB disk space.
Implementations of Zebedee exist for Linux and
Windows platforms, which at least suited our
needs.

4. Special Considerations

The above mentioned packages are all optimised
and limited to function in an embedded environ-
ment. Some of these limitations and
optimisations deserve special attention.

4.1 Binary size reduction by compiler
options and strip

In order to ease the run-time linking process and
to improve the readability of the executables, the
GNU compilers usually add loads of information
to an executable. In general, all function names,
variable names and such are all found in the
binary, even if no debugging support is compiled
in. This leads to an increase of the binary size by
30% for a regular C program, up to 400% for a
serious C++ binary using templates and STL.
Using the strip command, it is possible to re-
move all unnecessary information from the bi-
nary.

The GNU compilers have several other options
that are of use to generate small executables.
One of the more common-known compiler op-
tions are the optimise flags —O1 up to —O3. Less
known is the —Os flag, which means ‘optimise for
size’.!

On processors with a limited number of registers
like the Intel families, the —fomit-frame-pointers
flag also reduces code size. Using this option, no
register is used to pass frame pointers, which is
used for some complex debugging tricks. Note
that enabling this option doesn’t always result in
a smaller footprint. Experimentation is suggested.
There are several more options that can lead to
footprint reduction. It is advised to read the
information pages and experiment.

4.2 Users, Groups and Authentication
Because embedded systems do not need all
security features of large, multi-user UNIX sys-
tems, several shortcuts can be taken to reduce
memory footprint and complexity.

In general, UNIX systems tend to store user
accounts in /etc/passwd, which is world-read-
able, but the actual encrypted passwords are
either stored in a database or in a file like /etc/
shadow, accessible only by root. Several mod-
ern UNIX systems also feature PAM, Pluggable
Authentication Modules, which allow for authenti-
cation via a Windows domain server or by smart
cards. PAM is flexible, but large and time-con-
suming. Therefore, it is not implemented in uClibc
and TinyLogin. Using a password database is not
implemented. It is even possible to remove the
need for the shadow file. This makes sense as
there are no users on the system trying to de-
crypt the root password. There is no support for a
Name Service Caching Daemon (nscd), because
is expected that there are not many calls to
authentication, nor that there are many users on
the embedded system.

In fact, some embedded systems only define a
root user — all applications run as root.
If the embedded system provides connections to

1 For modern gigahertz processors, using the —Os flag may yield higher speeds. Using small executables, more of the executable can
reside in the processor cache. If the processor runs out of the cache, retrieving non-cached instructions results in thousands of
wasted processor cycles. Of course, this is not relevant for our 40MHz 386SX processor.

the internet however, it still is a good idea to run
all internet daemons either via chroot or at least,
have their privileges dropped to ‘nobody’ level.

4.3 Disk management

Because the Jumptec board provides an IDE disk
interface for the flash memory, a root file system
is needed. Linux supports many file systems, but
how to choose one? An embedded system has to
prevent disk corruption due to unforeseen power-
downs. Thus, a file system should either imple-
ment journaling, or should be mounted read-only.
Paid by Ericsson, Red Hat developed the
Journaling Flash File System for use in embed-
ded systems, but JFFS uses regular flash
memory to create a disk emulation. Because we
already have a Flash IDE disk, JFFS is not an
option.

If we want to use a file system which fully sup-
ports UNIX (i.e. atime, user/groups and soft and
hard links), the choice is limited to file systems
like MINIX and EXT2. The Linux kernel imple-
mentation of MINIX is 20 kb smaller than the
EXT2 implementation. Another advantage of
MINIX is that the fs tools fsck.minix and
mkfs.minix are available within BusyBox. This
turned out not to be a real advantage, as the size
increase of Busybox is near the size of the
fsck.ext2 and mkfs.ext2 executables, anyway.

4.4 System Init

If you have a single monolithic program, there is
no need for an init procedure, just have the
kernel start your program. For all more compli-
cated cases, BusyBox implements the init proc-
ess in a very straightforward manner. Init is
always the first process to be started, PID 1. As
in larger systems, init reads the /etc/inittab file.
There are some important differences, though.

By default, there are no run levels. Your embed-
ded system either runs or not.

There is an option to start an initialisation script,
which in turn may call other scripts. Such scripts
are used to initialize the ram disk, fsck the log
partition or setup networking options.

Another implemented feature is to start binaries
in ‘respawn’ mode. If a respawned application

exits or crashes, it will be restarted by the init
process. This is very convenient for daemons. If
one wants to, it is possible to mimic general
UNIX initialisation (either BSD or Sys V) to a
large degree, at the cost of more CPU cycles and
more disk/RAM usage. The BusyBox implemen-
tation thus is flexible enough, and suited our
needs perfectly.

5. Conclusions

Using freely available packages, it is possible to
set up an embedded Linux system for general
use. For this case, there were no timing con-
straints that required the use of real-time exten-
sions to the Linux kernel.

Setting up an embedded system is not an easy
task. There are lots of configuration choices per
package, and many interactions between con-
figuration options of different packages. It is a
time-consuming, but rewarding task.

Help provided by FAQs, IRC and mailinglists
proved very useful. Most packages are devel-
oped by seriously involved communities. If asked
politely, all necessary support is available. In this
case, Linux has proven to be scalable to fit in
embedded systems.

6. Appendix

6.1 Packages and References
The following packages are discussed in this article:

Package Licence WWW

Linux kernel GPL http://www.kernel.org

uClibC LGPL http://www.uclibc.org

BusyBox GPL http://www.busybox.net

TinyLogin GPL http://www.busybox.net/tinylogin
PPPD BSD or GPL (per file) |http://www.samba.org/ppp

Thitpd BSD http://www.acme.com/software/thttpd/
Boa GPL http://www.boa.org/

Zebedee GPL http://www.winton.org.uk/zebedee/

For more info on embedded Linux in general, the following book is recommended:
Craigh Hollabaugh: Embedded Linux, Hardware, Software, and Interfacing
Pearson Education. 2002, Indianapolis, ISBN 0-672-32226-9

For more information on the Machine2World platform or Sioux Technische Software
Ontwikkeling B.V., please visit http://www.sioux.nl

